3.19 \(\int \frac{A+C \sec ^2(c+d x)}{\sqrt{b \sec (c+d x)}} \, dx\)

Optimal. Leaf size=68 \[ \frac{2 (A-C) E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{d \sqrt{\cos (c+d x)} \sqrt{b \sec (c+d x)}}+\frac{2 C \tan (c+d x)}{d \sqrt{b \sec (c+d x)}} \]

[Out]

(2*(A - C)*EllipticE[(c + d*x)/2, 2])/(d*Sqrt[Cos[c + d*x]]*Sqrt[b*Sec[c + d*x]]) + (2*C*Tan[c + d*x])/(d*Sqrt
[b*Sec[c + d*x]])

________________________________________________________________________________________

Rubi [A]  time = 0.056838, antiderivative size = 68, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.12, Rules used = {4046, 3771, 2639} \[ \frac{2 (A-C) E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{d \sqrt{\cos (c+d x)} \sqrt{b \sec (c+d x)}}+\frac{2 C \tan (c+d x)}{d \sqrt{b \sec (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Int[(A + C*Sec[c + d*x]^2)/Sqrt[b*Sec[c + d*x]],x]

[Out]

(2*(A - C)*EllipticE[(c + d*x)/2, 2])/(d*Sqrt[Cos[c + d*x]]*Sqrt[b*Sec[c + d*x]]) + (2*C*Tan[c + d*x])/(d*Sqrt
[b*Sec[c + d*x]])

Rule 4046

Int[(csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*(csc[(e_.) + (f_.)*(x_)]^2*(C_.) + (A_)), x_Symbol] :> -Simp[(C*Cot[
e + f*x]*(b*Csc[e + f*x])^m)/(f*(m + 1)), x] + Dist[(C*m + A*(m + 1))/(m + 1), Int[(b*Csc[e + f*x])^m, x], x]
/; FreeQ[{b, e, f, A, C, m}, x] && NeQ[C*m + A*(m + 1), 0] &&  !LeQ[m, -1]

Rule 3771

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[(b*Csc[c + d*x])^n*Sin[c + d*x]^n, Int[1/Sin[c + d
*x]^n, x], x] /; FreeQ[{b, c, d}, x] && EqQ[n^2, 1/4]

Rule 2639

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticE[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ[{
c, d}, x]

Rubi steps

\begin{align*} \int \frac{A+C \sec ^2(c+d x)}{\sqrt{b \sec (c+d x)}} \, dx &=\frac{2 C \tan (c+d x)}{d \sqrt{b \sec (c+d x)}}+(A-C) \int \frac{1}{\sqrt{b \sec (c+d x)}} \, dx\\ &=\frac{2 C \tan (c+d x)}{d \sqrt{b \sec (c+d x)}}+\frac{(A-C) \int \sqrt{\cos (c+d x)} \, dx}{\sqrt{\cos (c+d x)} \sqrt{b \sec (c+d x)}}\\ &=\frac{2 (A-C) E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{d \sqrt{\cos (c+d x)} \sqrt{b \sec (c+d x)}}+\frac{2 C \tan (c+d x)}{d \sqrt{b \sec (c+d x)}}\\ \end{align*}

Mathematica [C]  time = 0.708521, size = 126, normalized size = 1.85 \[ -\frac{2 i \left (2 (A-C) e^{2 i (c+d x)} \sqrt{1+e^{2 i (c+d x)}} \text{Hypergeometric2F1}\left (\frac{1}{2},\frac{3}{4},\frac{7}{4},-e^{2 i (c+d x)}\right )-3 \left (A e^{2 i (c+d x)}+A-2 C e^{2 i (c+d x)}\right )\right )}{3 d \left (1+e^{2 i (c+d x)}\right ) \sqrt{b \sec (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[(A + C*Sec[c + d*x]^2)/Sqrt[b*Sec[c + d*x]],x]

[Out]

(((-2*I)/3)*(-3*(A + A*E^((2*I)*(c + d*x)) - 2*C*E^((2*I)*(c + d*x))) + 2*(A - C)*E^((2*I)*(c + d*x))*Sqrt[1 +
 E^((2*I)*(c + d*x))]*Hypergeometric2F1[1/2, 3/4, 7/4, -E^((2*I)*(c + d*x))]))/(d*(1 + E^((2*I)*(c + d*x)))*Sq
rt[b*Sec[c + d*x]])

________________________________________________________________________________________

Maple [C]  time = 0.279, size = 588, normalized size = 8.7 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A+C*sec(d*x+c)^2)/(b*sec(d*x+c))^(1/2),x)

[Out]

-2/d*(I*A*sin(d*x+c)*cos(d*x+c)*EllipticE(I*(-1+cos(d*x+c))/sin(d*x+c),I)*(1/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)
/(cos(d*x+c)+1))^(1/2)-I*A*sin(d*x+c)*cos(d*x+c)*(1/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*El
lipticF(I*(-1+cos(d*x+c))/sin(d*x+c),I)-I*C*sin(d*x+c)*cos(d*x+c)*EllipticE(I*(-1+cos(d*x+c))/sin(d*x+c),I)*(1
/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)+I*C*(1/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+
1))^(1/2)*EllipticF(I*(-1+cos(d*x+c))/sin(d*x+c),I)*cos(d*x+c)*sin(d*x+c)+I*A*sin(d*x+c)*EllipticE(I*(-1+cos(d
*x+c))/sin(d*x+c),I)*(1/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)-I*A*sin(d*x+c)*EllipticF(I*(-1
+cos(d*x+c))/sin(d*x+c),I)*(1/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)-I*C*sin(d*x+c)*EllipticE
(I*(-1+cos(d*x+c))/sin(d*x+c),I)*(1/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)+I*C*sin(d*x+c)*Ell
ipticF(I*(-1+cos(d*x+c))/sin(d*x+c),I)*(1/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)+A*cos(d*x+c)
^2-A*cos(d*x+c)+C*cos(d*x+c)-C)*(b/cos(d*x+c))^(1/2)/sin(d*x+c)/b

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{C \sec \left (d x + c\right )^{2} + A}{\sqrt{b \sec \left (d x + c\right )}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+C*sec(d*x+c)^2)/(b*sec(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

integrate((C*sec(d*x + c)^2 + A)/sqrt(b*sec(d*x + c)), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{{\left (C \sec \left (d x + c\right )^{2} + A\right )} \sqrt{b \sec \left (d x + c\right )}}{b \sec \left (d x + c\right )}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+C*sec(d*x+c)^2)/(b*sec(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

integral((C*sec(d*x + c)^2 + A)*sqrt(b*sec(d*x + c))/(b*sec(d*x + c)), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{A + C \sec ^{2}{\left (c + d x \right )}}{\sqrt{b \sec{\left (c + d x \right )}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+C*sec(d*x+c)**2)/(b*sec(d*x+c))**(1/2),x)

[Out]

Integral((A + C*sec(c + d*x)**2)/sqrt(b*sec(c + d*x)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{C \sec \left (d x + c\right )^{2} + A}{\sqrt{b \sec \left (d x + c\right )}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+C*sec(d*x+c)^2)/(b*sec(d*x+c))^(1/2),x, algorithm="giac")

[Out]

integrate((C*sec(d*x + c)^2 + A)/sqrt(b*sec(d*x + c)), x)